График функции корень из квадратного трехчлена. Квадратичная функция

Определение

Параболой называется график квадратичной функции $y = ax^{2} + bx + c$, где $a \neq 0$.

График функции $y = x^2$.

Для схематичного построения графика функции $y = x^2$ найдем несколько точек, удовлетворяющих этому равенству. Для удобства запишем координаты этих точек в виде таблицы:

График функции $y = ax^2$.

Если коэффициент $a > 0$, то график $y = ax^2$ получается из графика $y = x^2$ либо вертикальным растяжением (при $a > 1$), либо сжатием к оси $x$ (при $0 < a < 1$). Изобразим для примера графики $y = 2x^2$ и $y = \dfrac{x^2}{2}$:

$y = 2x^2$ $y = \dfrac{x^2}{2}$


Если же $a < 0$, то график функции $y = ax^2$ можно получить из графика $y = |a|x^2$, отразив его симметрично относительно оси $x$. Построим графики функций $y = - x^2$, $y = -2x^2$ и $y = - \dfrac{x^2}{2}$:

$y = - x^2$ $y = -2x^2$ $y = - \dfrac{x^2}{2}$



График квадратичной функции.

Для построения графика функции $y = ax^2 + bx + c$ нужно выделить из квадратного трехчлена $ax^2 + bx + c$ полный квадрат, то есть представить его в виде $a(x - x_0)^2 + y_0$. График функции $y = a(x - x_0)^2 + y_0$ получается из соответствующего графика $y = ax^2$ смещением на $x_0$ вдоль оси $x$, и на $y_0$ вдоль оси $y$. В итоге точка $(0;0)$ переместится в точку $(x_0;y_0)$.

Определение

Вершиной параболы $y = a(x - x_0)^2 + y_0$ называется точка с координатами $(x_0;y_0)$.

Построим параболу $y = 2x^2 - 4x - 6$. Выделив полный квадрат, получим $y = 2(x - 1)^2 - 8$.

Построим график $y = 2x^2$ Сместим его вправо на 1 И вниз на 8



В итоге получилась парабола с вершиной в точке $(1;-8)$.

График квадратичной функции $y = ax^2 + bx + c$ пересекает ось $y$ в точке $(0; c)$ и ось $x$ в точках $(x_{1,2};0)$, где $x_{1,2}$ - корни квадратного уравнения $ax^2 + bx + c = 0$ (при этом если корней у уравнения нет, то соответствующая парабола не пересекает оси $x$).

Например, парабола $y = 2x^2 - 4x - 6$ пересекает оси в точках $(0; -6)$, $(-1; 0)$ и $(3; 0)$.

Определяемый формулой $a{{x}^{2}}+bx+c$ $(a\ne 0).$ Числа $a, b$ и $c$ - коэффициенты квадратного трехчлена, они обычно называются: a - старший, b - второй или средний коэффициент, c - свободный член. Функция вида y = ax 2 + bx + c называется квадратичной функцией.

У всех этих парабол вершина находится в начале координат; при a > 0 это наинизшая точка графика (наименьшее значение функции), а при a < 0, наоборот, наивысшая точка (наибольшее значение функции). Ось Oy есть ось симметрии каждой из таких парабол.

Как видно, при a > 0 парабола направлена вверх, при a < 0 - вниз.

Существует простой и удобный графический способ, позволяющий строить любое число точек параболы y = ax 2 без вычислений, если известна точка параболы, отличная от вершины. Пусть точка M(x 0 , y 0) лежит на параболе y = ax 2 (рис. 2). Если мы хотим построить между точками O и M дополнительно еще n точек, то делим отрезок ON оси абсцисс на n + 1 равных частей и в точках деления проводим перпендикуляры к оси Ox. На столько же равных частей делим отрезок NM и точки деления соединяем лучами с началом координат. Искомые точки параболы лежат на пересечении перпендикуляров и лучей с одинаковыми номерами (на рис. 2 число точек деления равно 9).

График функции y =ax 2 + bx + c отличается от графика y = ax 2 лишь своим положением и может быть получен просто перемещением кривой на чертеже. Это следует из представления квадратного трехчлена в виде

откуда легко заключить, что график функции y = ax 2 + bx + c есть парабола y = ax 2 , вершина которой перенесена в точку

а ось её симметрии осталась параллельной оси Oy (рис. 3). Из полученного выражения для квадратного трехчлена легко следуют все его основные свойства. Выражение D = b 2 − 4ac называют дискриминантом квадратного трехчлена ax 2 + bx + c и дискриминантом связанного с ним квадратного уравнения ax 2 + bx + c = 0. От знака дискриминанта зависит, пересекает ли график квадратного трехчлена ось абсцисс или лежит по одну сторону от нее. Именно, если D < 0, то парабола не имеет общих точек с осью Ox, при этом: если a > 0, то парабола лежит выше оси Ox, а если a < 0, то ниже этой оси (рис. 4). В случае D > 0 график квадратного трехчлена пересекает ось абсцисс в двух точках x 1 и x 2 , которые являются корнями квадратного уравнения ax 2 + bx + c = 0 и равны соответственно

При D = 0 парабола касается оси Ox в точке

Свойства квадратного трехчлена лежат в основе решения квадратных неравенств. Поясним это на примере. Пусть требуется найти все решения неравенства 3x 2 - 2x - 1 < 0. Найдем дискриминант квадратного трехчлена, стоящего в левой части неравенства: D = 16. Так как D > 0, то соответствующее квадратное уравнение 3x 2 − 2x − 1 = 0 имеет два различных корня, они определяются по формулам, приведенным ранее:

x 1 = −1/3 и x 2 = 1.

В рассматриваемом квадратном трехчлене a = 3 > 0, значит, ветви его графика направлены вверх и значения квадратного трехчлена отрицательны лишь в интервале между корнями. Итак, все решения неравенства удовлетворяют условию

−1/3 < x < 1.

К квадратным неравенствам могут быть сведены разнообразные неравенства теми же самыми заменами, какими различные уравнения сводятся к квадратному.

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1) Формула параболы y=ax 2 +bx+c ,
если а>0 то ветви параболы направленны вверх ,
а то ветви параболы направлены вниз .
Свободный член c эта точке пересекается параболы с осью OY;

2) , ее находят по формуле x=(-b)/2a , найденный x подставляем в уравнение параболы и находим y ;

3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax 2 +bx+c=0 ;

Виды уравнений:

a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x 1 =(-4+2)/2=-1
x 2 =(-4-2)/2=-3

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x 1 =2
x 2 =-2

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE , чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

График квадратного трехчлена

2019-04-19

Квадратный трехчлен

Квадратным трехчленом мы назвали целую рациональную функцию второй степени:

$y = ax^2 + bx + c$, (1)

где $a \neq 0$. Докажем, что графиком квадратного трехчлена является парабола, получаемая параллельными сдвигами (в на правлениях координатных осей) из параболы $y = ax^2$. Для этого приведем выражение (1) путем простых тождественных преобразований к виду

$y = a(x + \alpha)^2 + \beta$. (2)

Соответствующие преобразования, записанные ниже, известны как «выделение точного квадрата»:

$y = x^2 + bx + c = a \left (x^2 + \frac{b}{a} x \right) + c = a \left (x^2 + \frac{b}{a} x + \frac {b^2}{4a^2} \right) - \frac {b^2}{4a} + c = a \left (x + \frac{b}{2a} \right)^2 - \frac {b^2 - 4ac}{4a}$. (2")

Мы привели квадратный трехчлен к виду (2); при этом

$\alpha = \frac{b}{2a}, \beta = - \frac {b^2 - 4ac}{4a}$

(эти выражения не следует запоминать, удобней всякий раз выполнять преобразование трехчлена (1) к виду (2) непосредственно).

Теперь видно, что график трехчлена (1) - парабола, равная параболе $y = ax^2$ и получаемая сдвигами параболы $y = ax^2$ в направлениях осей координат на $\alpha$ и $\beta$ (с учетом знака $\alpha$ и $\beta$) соответственно. Вершина этой параболы помещается в точке $(- \alpha, \beta)$, ее осью служит прямая $x = - \alpha$. При $a > 0$ вершина - наинизшая точка параболы, при $a
Проведем теперь исследование квадратного трехчлена, т. е. выясним его свойства в зависимости от числовых значений коэффициентов $a, b, с$ в его выражении (1).

Обозначим в равенстве (2") величину $b^2- 4ac$ через $d$:

$y = a \left (x + \frac{b}{2a} \right)^2 - \frac{d}{4a}$; (4)

$d = b^2 - 4ac$ называется дискриминантом квадратного трехчлена. Свойства трехчлена (1) (и расположение его графика) определяются знаками дискриминанта $d$ и старшего коэффициента $a$.


1) $a > 0, d 0$; так как $a > 0$, то график расположен выше вершины $O^{ \prime}$; он лежит в верхней полуплоскости ($y > 0$ - рис а.).

2) $a
3) $a > 0, d > 0$. Вершина $O^{ \prime}$ лежит ниже оси $Ox$, парабола пересекает ось $Ox$ в двух точках $x_1, x_2$ (рис в.).

4) $a 0$. Вершина $O^{ \prime}$ лежит выше оси $Ox$, парабола снова пересекает ось $Ox$ в двух точках $x_1, x_2$ (рис. г).

5) $a > 0, d = 0$. Вершина лежит на самой оси $Ox$, парабола расположена в верхней полуплоскости (рис. д).

6) $a
Выводы. Если $d 0$), либо ниже (при $a
Если $d > 0$, то функция знакопеременная (график частью лежит ниже, частью выше оси $Ox$). Квадратный трехчлен с $d > 0$ имеет два корня (нуля) $x_1, x_2$. При $a > 0$ он отрицателен в интервале между корнями (рис. в) и положителен вне этого интервала. При $a

Понравилась статья? Поделиться с друзьями: