Центральное тело солнечной системы звезда карлик. Солнце солнце, центральное тело солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса среди звезд солнце по размеру и яркости занимает среднее положение

(лат. Sol) - единственная звезда в . и семь других вращаются вокруг Солнца. Кроме них вокруг Солнца вращаются кометы, астероиды и другие мелкие объекты.

Солнце как звезда

Солнце - центральное и массивные тело Солнечной системы. Его масса приблизительно в 333 000 раз больше массы Земли и в 750 раз превышает массу всех других планет, вместе взятых. Солнце - мощный источник энергии, которую оно постоянно излучает во всех участках спектра электромагнитных волн - от рентгеновских и ультрафиолетовых лучей до радиоволн. Это излучение влияет на все тела Солнечной системы: нагревает их, сказывается на атмосферах планет, дает свет и тепло, необходимые для жизни на Земле.

Вместе Солнце - ближайшая к нам звезда, у которой, в отличие от всех других звезд, можно наблюдать диск, и с помощью телескопа изучать на нем мелкие детали, размером до нескольких сотен километров. Это типичная звезда, поэтому ее изучение помогает понять природу звезд вообще. По звездной классификации Солнце имеет спектральный класс G2V. В популярной литературе Солнце довольно часто классифицируют как желтый карлик.

Видимый угловой диаметр Солнца несколько меняется через эллиптичность орбиты Земли. В среднем он составляет около 32 "или 1 / 107 Радиана, т.е. диаметр Солнца равен 1 / 107 а.е. , или примерно 1400000 км.

Строение Солнца

Как и все звезды, Солнце - раскаленный газовый шар. Химический состав (по числу атомов) определены из анализа солнечного спектра:

  • водород составляет около 90%,
  • гелий - 10%,
  • остальные элементы - менее 0,1%.

Вещество на Солнце очень ионизирована, т.е. атомы потеряли свои внешние электроны и вместе с ними стали свободными частицами ионизированного газа - плазмы.

Средняя плотность солнечного вещества ρ ≈ 1400 кг / м ³. Это значение близко к плотности воды и в тысячу раз больше плотности воздуха у поверхности Земли. Однако во внешних слоях Солнца плотность в миллионы раз меньше, а в центре - в 100 раз больше средней.
Вычисления, учитывающие рост плотности и температуры к центру, показывают, что в центре Солнца плотность составляет около 1,5 × 10 5 кг / м ³, давление - около 2 × 10 18 Па, а температура - около 15 млн К.

При такой температуре ядра атомов водорода (протоны и дейтрона) имеют очень большие скорости (сотни километров в секунду) и могут приближаться друг к другу, несмотря на действие электростатической силы отталкивания. Некоторые столкновения заканчиваются ядерными реакциями, в результате которых из водорода образуется гелий и высвобождается значительное количество энергии, которая превращается в тепло. Эти реакции являются источником энергии Солнца на современном этапе его эволюции. Вследствие этого количество гелия в центральной части светила постепенно увеличивается, а водорода - уменьшается.

Поток энергии, возникающей в недрах Солнца, передается во внешние слои и распределяется на все большую площадь. Вследствие этого температура солнечной плазмы снижается с удалением от центра. Зависимости от температуры и характера процессов, которой определяются, Солнце можно условно разделить на 4 части:

  • внутренняя, центральная часть (ядро), где давление и температура обеспечивают ход ядерных реакций, она простирается от центра на
  • расстояние примерно 1 / 3 радиуса
  • лучистая зона (расстояние от 1 / 3 до 2 / 3 радиуса), в которой энергия передается наружу результате последовательного поглощения и излучения квантов электромагнитной энергии;
  • конвективная зона - от верхней части «лучистой» зоны почти до видимой поверхности Солнца. Здесь температура быстро уменьшается с приближением к видимой поверхности светила, вследствие чего увеличивается концентрация нейтральных атомов, вещество становится прозрачнее, лучистое переноса становится менее эффективным и тепло передается в основном за счет перемешивания вещества (конвекция), подобно кипения жидкости в сосуде, который подогревается снизу;
  • солнечная атмосфера, которая начинается сразу за конвективной зоной и выходит далеко за пределы видимого диска Солнца. Нижний слой атмосферы - фотосфера, тонкий слой газов, который мы воспринимаем как поверхность Солнца. Верхних слоев атмосферы непосредственно не видно из-за значительной разреженности, их можно наблюдать или при полных солнечных затмений, либо с помощью специальных приборов.
Солнечная атмосфера и солнечная активность

Солнечная вспышка


Солнечную атмосферу можно условно разделить на несколько слоев.
Глубокий слой атмосферы, толщиной 200-300 км, называется фотосферой (сфера света). Из него излучается почти вся энергия, которая наблюдается в видимой части спектра.

На фотографиях фотосферы хорошо заметно ее тонкую структуру в виде ярких «зернышек» - гранул размером около 1000 км, разделенных узкими темными промежутками. Эта структура называется грануляцией. Она является результатом движения газов, который происходит в расположенной под атмосферой конвективной зоне Солнца.

В фотосфере, как и в более глубоких слоях Солнца, температура снижается с удалением от центра, изменяясь приблизительно от 8000 до 4000 К: внешние слои фотосферы охлаждаются вследствие излучения из них в межпланетное пространство.

В спектре видимого излучения Солнца, почти полностью образуется в фотосфере, снижению температуры во внешних слоях соответствуют темные линии поглощения. Они называются фраунгоферовых в честь немецкого оптика И. Фраунгофера (1787-1826), впервые 1814 года зарисовал несколько сотен таких линий. По той же причине (снижение температуры от центра Солнца) солнечный диск ближе к краю кажется темнее.

В высших слоях фотосферы температура составляет около 4000 К. При такой температуре и плотностью 10 -3 -10 -4 кг / м ³ водород становится практически нейтральным. Ионизированной лишь около 0,01% атомов, преимущественно металлов.

Однако выше в атмосфере температура, а вместе с ней и ионизация, снова начинают повышаться, сначала медленно, а потом очень быстро. Часть солнечной атмосферы, в которой повышается температура и последовательно ионизируются водород, гелий и другие элементы, называется хромосферой, ее температура составляет десятки и сотни тысяч кельвинов. В виде блестящей розовой каймы хромосферу видно вокруг темного диска в редкие моменты полных солнечных затмений. Выше хромосферы температура солнечных газов составляет 10 6 - 2 × 10 6 К и далее на протяжении многих радиусов Солнца почти не меняется. Эта разреженная и горячая оболочка называется солнечной короной. В виде лучистого жемчужного сияния ее можно наблюдать во время полной фазы затмения Солнца, тогда она представляет необычайно красивое зрелище. «Испаряясь» в межпланетное пространство, газ короны образует поток горячей разреженной плазмы, постоянно течет от Солнца и называется солнечным ветром.

Хромосферу и корону лучше наблюдать со спутников и орбитальных космических станций в ультрафиолетовых и рентгеновских лучах.
Время в некоторых участках фотосферы темные промежутки между гранулами увеличиваются, образуются небольшие круглые поры, некоторые из них развиваются в большие темные пятна, окруженные напивтинню, состоящий из продолговатых, радиально вытянутых фотосферных гранул.

Наблюдая солнечные пятна в телескоп, Галилей заметил, что они передвигаются вдоль видимого диска Солнца. На этом основании он сделал вывод, что Солнце вращается вокруг своей оси. Угловая скорость вращения светила уменьшается от экватора к полюсам, точки на экваторе осуществляют полный оборот за 25 суток, а вблизи полюсов звездный период обращения Солнца увеличивается до 30 суток. Земля движется по своей орбите в том же направлении, в котором вращается Солнце. Поэтому относительно земного наблюдателя период ее вращения больше и пятно в центре солнечного диска снова пройдет через центральный меридиан Солнца через 27 суток.

Интересные факты

  • Средняя плотность Солнца составляет всего 1,4 г / см ³, т.е. равна плотности воды Мертвого моря.
  • Каждую секунду Солнце излучает в 100 000 раз больше энергии, чем человечество выработало за всю свою историю
  • Удельный (на единицу массы) энергозатрат Солнца - всего 2 × 10 -4 Вт / кг, т.е. примерно такая же, как у кучи гнилого листьев.
  • 8 апреля 1947 года на поверхности южного полушария Солнца было зафиксировано наибольшее скопление солнечных пятен за все время наблюдений.
  • Его длина составляла 300 000 км, а ширина - 145 000 км. Оно было примерно в 36 раз больше площади поверхности Земли и его можно было легко разглядеть невооруженным глазом при закате.
  • В честь Солнца названа новую валюту Перу (новый соль)

Солнечная система является одной из 200 млрд. звездных систем, находящихся в галактике Млечный Путь . Она расположена примерно по середине между центром галактики и его краем.
Солнечная система - это определенное скопление небесных тел, которые связаны силами гравитации со звездой (Солнцем). В нее входят: центральное тело - Солнце , 8 больших планет с их спутниками, несколько тысяч малых планет или астероидов, несколько сот наблюдавшихся комет и бесконечное множество метеорных тел.

Большие планеты подразделяются на 2 основные группы :
— планеты земной группы (Меркурий , Венера , Земля и Марс);
— планеты юпитерской группы или планеты гиганты (Юпитер, Сатурн, Уран и Нептун).
В этой классификации нет места Плутону. В 2006 году было установлено, что Плутон из-за своих маленьких размеров и большой отдаленности от Солнца обладает низким гравитационным полем и ее орбита не похожа на соседние с нею орбиты, более близких к Солнцу планет. К тому же вытянутая эллипсоидная орбита Плутона (у остальных планет она почти круговая) пересекается с орбитой восьмой планеты Солнечной системы - Нептуна. Именно поэтому, с недавних времен, было решено лишить Плутона статуса "планеты".







Планеты земной группы сравнительно малы и имеют большую плотность. Основными их составляющими являются силикаты (соединения кремния) и железо. У планет-гигантов практически нет твердой поверхности. Это огромные газовые планеты, образованны преимущественно из водорода и гелия, атмосфера которых постепенно уплотняясь плавно переходить в жидкую мантию.
Конечно же основным элементов Солнечной системы является Солнце . Без него все планеты, в том числе и наша, разлетелись бы на огромные расстояния, а быть может даже и за пределы галактики. Именно Солнце из-за своей огромной массы (99,87% от массы всей Солнечной системы) создает невероятно мощное гравитационное воздействие на все планеты, их спутники, кометы и астероиды, заставляя вращаться каждого из них по своей орбите.

В Солнечной системе , помимо планет, имеются две области, заполненные малыми телами (карликовыми планетами, астероидами, кометами, метеоритами). Первая область - это Пояс Астероидов , который находится между Марсом и Юпитером. По составу он сходен с планетами земной группы, так как состоит из силикатов и металлов. За пределами Нептуна располагается вторая область которая называется Пояс Койпера . Располагает в себе много объектов (в основном карликовые планеты), состоящие из замершей воды, аммиака и метана, крупнейшим из которых является и Плутон.

Пояс Койпнера начинается сразу после орбиты Нептуна.

Внешнее кольцо ее заканчивается на расстоянии

в 8,25 млрд. км от Солнца. Это огромное кольцо вокруг всей

Солнечной системы, представляет из себя бесконечное

количество летучих веществ из льдинков метана, аммиака и воды.

Пояс Астероидов - рассположен между орбитой Марса и Юпитера.

Внешняя граница рассположена в 345 млн. км от Солнца.

Содержит десятки тысяч, возможно миллионы объектов более одного

километра в диаметре. Самые крупные из них - карликовые планеты

(диаметр от 300 до 900 км) .

Все планеты и большинство других объектов обращаются вокруг Солнца в одном направлении с вращением Солнца (против часовой стрелки, если смотреть со стороны северного полюса Солнца). Самой большой угловой скоростью обладает Меркурий — он успевает совершить полный оборот вокруг Солнца всего за 88 земных суток. А для самой удалённой планеты — Нептуна — период обращения составляет 165 земных лет. Большая часть планет вращается вокруг своей оси в ту же сторону, что и обращается вокруг Солнца. Исключения составляют Венера и Уран, причём Уран вращается практически «лёжа на боку» (наклон оси около 90°).

Раньше предполагалось, что граница Солнечной системы заканчивается сразу после орбиты Плутона. Однако в 1992 году были открыты новые небесные тела, которые несомненно принадлежат нашей системе, так как находятся непосредственно под гравитационным влиянием Солнца.

Каждому небесному объекту свойственны такие понятия как год и сутки. Год - это то время, за которое тело оборачивается вокруг Солнца на угол 360 градусов, т.е совершает полный круговой оборот. А сутки - это период вращения тела вокруг собственной оси. Самая близкая, от Солнца, планета Меркурий обращается вокруг Солнца за 88 земных суток, а вокруг своей оси - за 59 суток. Это значит, что на планете за один год проходит даже меньше двух суток (для примера на Земле один год включает в себя 365 дней, т.е именно столько раз Земля обернется вокруг своей оси за один оборот вокруг Солнца). В то время, как на самой отдаленной, от Солнца, карликовой планете Плутоне сутки составляют 153,12 часов (6,38 земных суток). А период обращения вокруг Солнца равен 247,7 земных лет. Т.е только наши прапрапраправнуки застанут тот момент когда Плутон наконец то пройдет весь путь по своей орбите.

галактическим годом . Помимо кругового движения по орбите, Солнечная система совершает вертикальные колебания относительно галактической плоскости, пересекая ее каждые 30-35 млн. лет и оказываясь то в северном, то в южном галактическом полушарии.
Возмущающим фактором для планет Солнечной системы является их гравитационное влияние друг на друга. Оно несколько изменяет орбиту по сравнению с той, по которой каждая планета двигалась бы под действием одного только Солнца. Вопрос в том могут ли эти возмущения накапливаться вплоть до падения планеты на Солнце либо удаление ее за пределы Солнечной системы , или они имеют периодический характер и параметры орбиты будут всего лишь колебаться вокруг некоторых средних значений. Результаты теоретических и исследовательских работ, выполненных астрономами более чем за 200 последних лет, говорят в пользу второго предположения. об этом же свидетельствуют данные геологии, палеонтологии и других наук о Земле: уже 4,5 млрд лет расстояние нашей планеты от Солнца практически не меняется.И в будущем ни падения на Солнце, ни уход из Солнечной системы , как и Земле , так и другим планетам не угрожает.

Солнечная система

Центральным объектом Солнечной системы является Солнце - звезда главной последовательности спектрального класса G2V, жёлтый карлик. В Солнце сосредоточена подавляющая часть всей массы системы (около 99,866 %), оно удерживает своим тяготением планеты и прочие тела, принадлежащие к Солнечной системе. Четыре крупнейших объекта - газовые гиганты - составляют 99 % оставшейся массы (при этом большая часть приходится на Юпитер и Сатурн - около 90 %).

Сравнительные размеры тел Солнечной системы

Крупнейшие, после Солнца, объекты в Солнечной системе – это планеты

В состав Солнечной системы входят 8 планет: Меркурий , Венера , Земля , Марс , Юпитер , Сатурн , Уран и Нептун (перечисляются в порядке удаления от Солнца). Орбиты всех этих планет лежат в одной плоскости, которую называют плоскостью эклиптики .

Взаимное расположение планет Солнечной системы

В период 1930 – 2006 годов считалось, что в Солнечной системе имеется 9 планет: к 8 перечисленным добавляли ещё и планету Плутон . Но в 2006 году на конгрессе Международного астрономического союза было принято определение планеты. Согласно этому определению, планетой называют небесное тело, которое одновременно соответствует трём условиям:

· вращается вокруг Солнца по эллиптической орбите (т.е. планетами не являются спутники планет)

· имеет достаточную силу тяжести, для того чтобы обеспечить форму, близкую к сферической (т.е. планетами не являются большинство астероидов, которые, хотя и вращаются вокруг Солнца, но не имеют сферической формы)

· являются гравитационными доминантами на своей орбите (т.е., помимо данной планеты, на той же орбите не существует сопоставимых небесных тел).

Плутон, а также рад астероидов (Церера, Веста и др.) соответствуют первым двум условиям, но не соответствуют третьему условию. Такие объекты относят к карликовым планетам . По состоянию на 2014 год, карликовых планет в Солнечной системе 5: Церера, Плутон, Хаумеа , Макемаке и Эрида; возможно, в будущем к ним будут причислены также Веста, Седна , Орк и Квавар . Все прочие небесные тела Солнечной системы, не являющиеся звёздами, планетами и карликовыми планетами, называют малыми телами Солнечной системы (спутники планет, астероиды, планеты, объекты пояса Койпера и облака Оорта ).

Расстояния внутри Солнечной системы обычно измеряют в астрономических единицах .). Астрономическое единицей называют расстояние от Земли до Солнца (или, говоря точным языком, большую полуось земной орбиты), равное 149,6 млн км (приблизительно 150 млн км).

Кратко расскажем о наиболее значительных объектах Солнечной системы (подробнее каждый из них будем изучать в следующем году).

Меркурий – ближайшая планета к Солнцу (0,4 а. е . от Солнца) и планета с наименьшей массой (0,055 массы Земли). Одна из хуже всего изученных планет, что объясняется тем, что из-за близости к Солнцу Меркурий очень трудно наблюдать с Земли. Рельеф Меркурия похож на лунный – с большим количеством ударных кратеров. Характерными деталями рельефа его поверхности, помимо ударных кратеров, являются многочисленные лопастевидные уступы, простирающиеся на сотни километров. Объекты на поверхности Меркурия, как правило, называют в честь деятелей культуры и искусства.

С большой вероятностью, Меркурий всегда повёрнут к Солнцу одной стороной, как Луна к Земле. Имеется гипотеза, что когда-то Меркурий был спутником Венеры, как Луна у Земли, но впоследствии был оторван силой притяжения Солнца, однако подтверждения этому нет.

Венера – вторая по расстоянию от Солнца планета Солнечной системы. По размерам и силе притяжения ненамного меньше Земли. Венера всегда покрыта плотной атмосферой, сквозь которую не видна её поверхность. Спутника не имеет. Характерной особенностью этой планеты является чудовищно высокое атмосферное давление (100 земных атмосфер) и температура поверхности, доходящая до 400-500 градусов Цельсия. Венера считается самым горячим, не считая Солнца, телом Солнечной системы. Судя по всему, такая высокая температура объясняется не столько близостью к Солнцу, сколько парниковым эффектом – атмосфера, состоящая в основном из углекислого газа, не выпускает в космос инфракрасное (тепловое) излучение планеты.

На земном небе Венера является самым ярким (после Солнца и Луны) небесным телом. На небесной сфере она может удаляться от Солнца не более чем на 48 градусов, поэтому по вечерам она всегда наблюдается на западе, а по утрам – на востоке, поэтому Венеру часто называют «утренней звездой».

Земля – наша планета, единственная, обладающая кислородной атмосферой, гидросферой и пока единственная, на которой обнаружена жизнь. У Земли имеется один крупный спутник – Луна , находящаяся на расстоянии 380 тыс. км. о т Земли (27 земных диаметров), вращающаяся вокруг земли с периодом в один месяц. Луна имеет массу в 81 раз меньше, чем у Земли (что является самым малым различием среди всех спутников планет Солнечной системы, поэтому систему «Земля/Луна» иногда называют двойной планетой). Сила тяжести на поверхности Луны в 6 раз меньше, чем на Земле. Атмосферы Луна не имеет.

Марс – четвёртая планета Солнечной системы, находящаяся на расстоянии от Солнаца 1,52 а. и значительно меньшая Земли по размерам. Планета покрыта слоем оксидов железа, из-за чего её поверхность имеет отчётливый оранжево-красный цвет, заметный даже с Земли. Именно из-за этого цвета, напоминающего цвет крови, планета и получила своё название в честь древнеримского бога войны Марса.

Интересно, что длительность суток на Марсе (период его вращения вокруг своей оси) почти равен земному и составляет 23,5 часа. Как и у Земли, ось вращения Марса наклонена к плоскости эклиптики, поэтому там тоже бывает смена времён года. На полюсах Марса имеются «полярные шапки», состоящие, правда, не из водяного льда, а из углекислоты. Марс имеет слабую атмосферу, состоящую преимущественно из углекислого газа, давление которой составляет примерно 1% от земной, что, впрочем, достаточно для периодически повторяющихся сильных пылевых бурь. Температура поверхности марса может меняться от плюс 20 градусов Цельсия летним днём на экваторе С уществует много свидетельств, что когда-то на Марсе имелась вода (имеются русла высохших рек и озёр) и, возможно, кислородная атмосфера и жизнь (свидетельств чему пока не получено).

У Марса имеются два спутника – Фобос и Деймос (эти названия в переводе с греческого означают «Страх» и «Ужас»).

Эти четыре планеты – Меркурий, Венера, Земля и Марс – носят обобщающее название «планеты земной группы ». От следующих далее за ними планет-гигантов их отличает, во-первых, сравнительно небольшие размеры (Земля – самая крупная из них), во-вторых – наличие твёрдой поверхности и твёрдого железосиликатного ядра.

Сравнительные размеры планет земной группы и карликовых планет

Есть распространённое мнение, что Венера, Земля и Марс представляют собой три разные стадии развития планет такого типа. Венера – это модель Земли, какой она была на раннем этапе своего развития, а Марс – это модель Земли, какой она может когда-то стать когда-то через миллиарды лет. Венера и марс также представляют по отношению к Земле два диаметрально противоположных случая формирования климата: на Венере основной вклад в формирование климата вносят атмосферные потоки, в то время как для Марса с его разреженной атмосферой основную роль играет слабое солнечное излучение. Сравнение этих трёх планет позволит, помимо прочего, лучше знать законы формирования климата и прогнозировать погоду на Земле.

После Марса идёт пояс астероидов . Интересно напомнить историю его открытия. В 1766 году немецкий астроном и математик Иоганн Тициус заявил, что выявил простую закономерность в нарастании радиусов околосолнечных орбит планет. Он начал с последовательности 0, 3, 6, 12, ..., в которой каждый следующий член образуется путем удвоения предыдущего (начиная с 3; то есть 3 ∙ 2n, где n = 0, 1, 2, 3, ...), затем добавил к каждому члену последовательности 4 и поделил полученные суммы на 10. В итоге получились весьма точные предсказания (см. таблицу), которые подтвердились и после того, как в 1781 году был открыт Уран:

Планета

2 n - 1

Радиус орбиты (а.), вычисленный по формуле

Реальный радиус орбиты

Меркурий

0,39

Венера

0,72

Земля

1,00

Марс

1,52

Юпитер

5,20

Сатурн

10,0

9,54

Уран

19,6

19,22

В результате получилось, что между Марсом и Юпитером должна находиться ранее неизвестная планета, вращающаяся вокруг Солнца по орбите радиусом 2,8 а. В 1800 году даже была создана группа из 24 астрономов, ведших круглосуточные ежедневные наблюдения на нескольких самых мощных в ту эпоху телескопах. Но первую малую планету, обращающуюся по орбите между Марсом и Юпитером, открыли не они, а итальянский астроном Джузеппе Пиацци (1746–1826), и произошло это не когда-нибудь, а в новогоднюю ночь 1 января 1801 года, и открытие это ознаменовало наступление Х IX столетия. Новогодний подарок оказался удален от Солнца на расстояние 2,77 а. е . Однако в течение всего нескольких лет после открытия Пиацци было обнаружено еще несколько малых планет, которые назвали астероидами , и сегодня их насчитывается много тысяч.

Что же касается правила Тициуса (или, как его ещё называют, «правило Тициуса-Бодэ »), то оно впоследствии было подтверждено для спутников Сатурна, Юпитера и Урана, но… не подтверждено для позже открытых планет – Нептуна, Плутона, Эриды и др. Не подтверждается оно и для экзопланет (планет, вращающихся вокруг других звёзд). В чём состоит его физический смысл – осталось неясно. Одно из вероятных объяснений правила заключается в следующем. Уже на стадии формирования Солнечной системы в результате гравитационных возмущений, вызванных протопланетами и их резонансом с Солнцем (при этом возникают приливные силы, и энергия вращения тратится на приливное ускорение или, скорее, замедление), сформировалась регулярная структура из чередующихся областей, в которых могли или не могли существовать стабильные орбиты согласно правилам орбитальных резонансов (то есть отношение радиусов орбит соседних планет равных 1 /2, 3/2, 5/2, 3/7 и т. п.). Впрочем, часть астрофизиков полагает, что это правило - всего лишь случайное совпадение.

За поясом астероидов следуют 4 планеты, которых называют планеты-гиганты : Юпитер, Сатурн, Уран и Нептун. Юпитер обладает массой в 318 раз больше земной, и в 2,5 раза массивнее всех остальных планет, вместе взятых. Он состоит главным образом из водорода и гелия. Высокая внутренняя температура Юпитера вызывает множество полупостоянных вихревых структур в его атмосфере, таких как полосы облаков и Большое красное пятно.

По состоянию на конец 2014 года у Юпитера насчитывается 67 спутников. Четыре крупнейших - Ганимед, Каллисто , Ио и Европа - были открыты ещё Галилео Галилеем в 1610 году и поэтому называются галилеевыми спутниками . Ближайший из них к Юпитеру – Ио – обладает самой мощной вулканической активностью из всех тел Солнечной системы. Самый дальний – Европа – наоборот, покрыт многокилометровым слоем льда, под которым, возможно, имеется океан с жидкой водой.Ганимед и Каллисто занимают промежуточное между ними состояние. Ганимед, крупнейший спутник в Солнечной системе, превосходит по размеру Меркурий. С помощью наземных телескопов за последующие 350 лет были открыты ещё 10 спутников Юпитера, поэтому с середины ХХ века долгое время считалось, что у Юпитера всего 14 спутников. Остальные 53 спутника были открыты с помощью побывавших у Юпитера автоматических межпланетных станций.

Сатурн – планета, следующая за Юпитером и знаменитая благодаря своей системе колец (которые представляют собой огромное количество маленьких спутников планеты – пояс, аналогичный поясу астероидов вокруг Солнца). Подобные кольца имеются также и у Юпитера, Урана и Нептуна, но только кольца Сатурна видны даже в слабый телескоп или в бинокль.

Хотя объём Сатурна составляет 60 % юпитерианского , масса (95 масс Земли) - меньше трети юпитерианской ; таким образом, Сатурн - наименее плотная планета Солнечной системы (его средняя плотность меньше плотности воды).

По состоянию на конец 2014 года у Сатурна известно 62 спутника. Крупнейший из них – Титан, размером больше Меркурия. Это единственный спутник планеты, у которого есть атмосфера (а также водоёмы и дожди, правда, не из воды, а из углеводородов); и единственный спутник планеты (не считая Луны), на который была осуществлена мягкая посадка.

При изучении планет у других звёзд оказалось, что Юпитер и Сатурн относится к классу планет, которые называют «юпитеры ». Их объединяет то, что это газовые шары с массой и объёмом, значительно превышающей земную , но с маленькой средней плотностью. Они не имеют твёрдой поверхности и состоят из газа, плотность которого увеличивается по мере приближения к центру планеты, возможно, в их недрах водород сжат дол металлического состояния.

Сравнительные размеры планет-гигантов с планетами земной группы и карликовыми планетами

Следующие две планеты-гиганта – Уран и Нептун – относят к тому классу планет, которые называют «нептуны ». По размерам, массе и плотности они занимают промежуточное положение между «юпитерами» и планетами земной группы . Остаётся открытым вопрос, есть ли у них твёрдая поверхность (скорее всего, из водяного льда) или же они являются такими же газовыми шарами, как Юпитер и Сатурн.

Уран с массой в 14 раз больше, чем у Земли, является самой лёгкой из внешних планет. Уникальным среди других планет его делает то, что он вращается «лёжа на боку»: наклон оси его вращения к плоскости эклиптики равен примерно 98°. Если другие планеты можно сравнить с вращающимися волчками, то Уран больше похож на катящийся шар. Он имеет намного более холодное ядро, чем другие газовые гиганты, и излучает в космос очень немного тепла. По состоянию на 2014 год у Урана известны 27 спутников; крупнейшие - Титания , Оберон , Умбриэль , Ариэль и Миранда (названы в честь персонажей произведений Шекспира).

Сравнительные размеры Земли и наиболее крупных спутников планет

Нептун , хотя и немного меньше Урана по размерам, более массивен (17 масс Земли) и поэтому более плотный. Он излучает больше внутреннего тепла, но не так много, как Юпитер или Сатурн. У Нептуна имеется 14 известных спутников. Два крупнейших – Тритон и Нереида , открытые с помощью наземных телескопов. Тритон, является геологически активным, с гейзерами жидкого азота. Остальные спутники были открыты космическим аппаратом «Вояджер-2», пролетавшим мимо Нептуна в 1989 году.

Плутон - карликовая планета, открытая в 1930 году и до 2006 года считавшийся полноценной планетой. Орбита Плутона резко отличается от других планет, во-первых, тем, что она не лежит в плоскости эклиптики, а наклонена к ней на 17 градусов, а, во-вторых, если орбиты остальных планет близки к круговым, то Плутон может то приближаться к Солнцу на расстояние 29,6 а. е ., оказываясь к нему ближе Нептуна, то удаляется на 49,3 а. е.

У Плутона имеется слабая атмосфера, которая в зимнее время выпадает на его поверхность в виде снега, а в летнее время опять обволакивает планету.

В 1978 году у Плутона был открыт спутник, получивший название Харон . Поскольку центр масс системы Плутон - Харон находится вне их поверхностей, они могут рассматриваться в качестве двойной планетной системы. Четыре меньших спутника - Никта , Гидра, Кербер и Стикс - обращаются вокруг Плутона и Харона.

С Плутоном повторилась ситуация, которая в 1801 году произошла с Церерой, которая сначала считалась отдельной планетой, но затем оказалась лишь одним из объектов пояса астероидов. Точно так же и Плутон оказался лишь одним из объектов «второго пояса астероидов», получившего название «пояс Койпера ». Только в случае с Плутоном период неопределённость растянулся на несколько десятков лет, в течение которых оставался открытым вопрос, существует ли десятая планета Солнечной системы. И лишь на рубеже XX и XXI веков оказалось, что «десятых планет» существует множество, и Плутон – одна из них.

Карикатура "изгнание Плутона из числа планет"

Пояс Койпера простирается между 30 и 55 а. е . от Солнца. Составлен главным образом малыми телами Солнечной системы, но многие из крупнейших его объектов, такие как Квавар , Варуна и Орк , могут быть переклассифицированы в карликовые планеты после уточнения их параметров. По оценкам, более 100 000 объектов пояса Койпера имеют диаметр больше 50 км, но полная масса пояса равна только одной десятой или даже одной сотой массы Земли. Многие объекты пояса обладают множественными спутниками, и у большинства объектов орбиты располагаются вне плоскости эклиптики.

Помимо Плутона, из объектов пояса Койпера статус карликовой планеты имеют Хаумеа (меньше Плутона, имеет сильно вытянутую форму и период вращения вокруг своей оси около 4 часов; два спутника и ещё по крайней мере восемь транснептуновых объектов являются частью семейства Хаумеа ; орбита обладает большим наклонением к плоскости эклиптики - 28°); Макемаке (является вторым по видимой яркости в поясе Койпера после Плутона; имеет диаметр от 50 до 75 % диаметра Плутона, орбита наклонена на 29°) и Эрида (радиус орбиты в среднем 68 а. е ., диаметр около 2400 км, то есть на 5 % больше, чем у Плутона, и именно её открытие породило споры о том, что именно следует называть планетой). У Эриды имеется один спутник - Дисномия . Как и у Плутона, её орбита является чрезвычайно вытянутой, с перигелием 38,2 а. е . (примерное расстояние Плутона от Солнца) и афелием 97,6 а. е.; и орбита сильно (44,177°) наклонена к плоскости эклиптики.

Сравнительные размеры объектов пояса Койпера

Специфичным транснептуновым объектом является Седна , обладающая очень сильно вытянутой орбитой - от приблизительно 76 а. е . в перигелии до 975 а. е. в афелии и периодом обращения свыше 12 тысяч лет.

Ещё один класс малых тел Солнечной системы – это кометы , состоящие главным образом из летучих веществ (льдов). Их орбиты имеют большой эксцентриситет, как правило, с перигелием в пределах орбит внутренних планет и афелием далеко за Плутоном. Когда комета входит во внутреннюю область Солнечной системы и приближается к Солнцу, её ледяная поверхность начинает испаряться и ионизироваться, создавая кому - длинное облако из газа и пыли, часто видимое с Земли невооружённым глазом. Наиболее известна комета Галлея, которая возвращается к Солнцу раз в 75-76 лет (последний раз был в 1986 году). У большинства же комет период вращения может составлять несколько тысяч лет.

Источником комет является облако Оорта . Это сферическое облако ледяных объектов (вплоть до триллиона). Предполагаемое расстояние до внешних границ облака Оорта от Солнца составляет от 50 000 а. е . (приблизительно 1 световой год) до 100 000 а. е. (1,87 св. лет).

Вопрос о том, где именно заканчивается Солнечная система и начинается межзвёздное пространство, неоднозначен. Ключевыми в их определении принимают два фактора: солнечный ветер и солнечное тяготение. Внешняя граница солнечного ветра - гелиопауза , за ней солнечный ветер и межзвёздное вещество смешиваются, взаимно растворяясь. Гелиопауза находится примерно в четыре раза дальше Плутона и считается началом межзвёздной среды.

Вопросы и задания:

1. перечислите планеты Солнечной системы. Назовите основные особенности каждой из них

2. что является центральным объектом Солнечной системы?

3. в чём измеряют расстояния внутри Солнечной системы? Чему равна 1 астрономическая единица?

4. в чём разница между планетами земной группы, планетами-гигантами, карликовыми планетами и малыми телами Солнечной системы?

5. чем отличаются друг от друга классы планет под названием «земли», «юпитеры» и «нептуны »?

6. назовите основные объекты пояса астероидов и пояса Койпера . Какие из них относят к карликовым планетам?

7. почему Плутон в 2006 году перестал считаться планетой?

8. некоторые спутники Юпитера и Сатурна по размерам больше, чем планета Меркурий. Почему же тогда эти спутники не считаются планетами?

9. где заканчивается Солнечная система?

Вопросы:

1. Назови центральное тело Солнечной системы.

2. Что можно увидеть на Солнце?

3. Погибнет ли Солнце?

СОЛНЦЕ -
Масса = 1.99* 10 30 кг.
Диаметр = 1.392.000 км.
Абсолютная звёздная величина = +4.8
Спектральный класс = G2
Температура поверхности = 5800 о К
Период обращения вокруг оси = 25 ч(полюса) -35 ч(экватор)
Период обращения вокруг центра галактики = 200.000.000 лет
Расстояние до центра галактики = 25000 свет. лет
Скорость движения вокруг центра галактики = 230 км/сек.

Солнце - центральное и самое большое тело Солнечной системы, раскаленный
плазменный шар, типичная звезда-карлик. Химический состав Солнца определил, что оно состоит из
водорода и гелия , остальные элементы менее 0,1%.

Источником Солнечной энергии является реакция превращения водорода в гелий со скоростью 600 миллионов тонн в секунду. При этом в ядре Солнца выделяется свет и тепло. Температура в ядре достигает 15 миллионов градусов.
То есть Солнце является горячим вращаюшимся шаром, состоящим из светящегося газа. Радиус Солнца 696 т. км. Диаметр Солнца : 1392000 км (109 диаметров Земли).

Солнечная атмосфера (хромосфера и солнечная корона) очень активна, в ней наблюдаюся различные явления: вспышки, протуберанцы, солнечный ветер (постоянное истечение вещества короны в межпланетное пространство).

ПРОТУБЕРАНЦЫ (от лат. protubero вздуваюсь), громадные, протяженностью до сотен тысяч километров, языки раскаленного газа в солнечной короне, имеющие большую плотность и меньшую температуру, чем окружающая их плазма короны. На диске Солнца наблюдаются в виде темных волокон, а на его краю в виде светящихся облаков, арок или струй. Их темперагура может достигать до 4000 градусов.

СОЛНЕЧНАЯ ВСПЫШКА, самое мощное проявление солнечной активности, внезапное местное выделение энергии магнитных полей в короне и хромосфере Солнца. При солнечных вспышках наблюдаются:увеличение яркости хромосферы (8-10 мин), ускорение электронов, протонов и тяжелых ионов, рентгеновское и радиоизлучение.

СОЛНЕЧНЫЕ ПЯТНА
, образования в фотосфере Солнца, развиваются из пор, могут достигать 200 тыс. км в поперечнике, существуют в среднем 10-20 суток. Температура в солнечных пятнах ниже температуры фотосферы, вследствие чего они в 2-5 раз темнее фотосферы. Для солнечных пятен характерны сильные магнитные поля.

ВРАЩЕНИЕ СОЛНЦА вокруг оси, происходит в том же направлении, что и Земли (с запада на восток).Один оборот относительно Земли совершается за 27,275 сут (синодический период обращения), относительно неподвижных звезд за 25,38 сут (сидерический период обращения).

ЗАТМЕНИЯ солнечные и лунные, происходят либо когда Земля попадает в тень,
отбрасываемую Луной (солнечные затмения), либо когда Луна попадает в тень Земли
(лунные затмения).
Длительность полных солнечных затмений не превышает 7,5 мин,
частных (большой фазы) 2 ч. Лунная тень скользит по Земле со скоростью ок. 1 км/с,
пробегая расстояние до 15 тыс. км, ее диаметром ок. 270 км. Полные лунные затмения могут длиться до 1 ч 45мин. Затмения повторяются в определенной последовательности через период времени в 6585 1/3 сут. Ежегодно бывает не более 7 затмений (из них не более 3 лунных).

Активность солнечной атмосферы переодически повторяется, 11-летний переод.

Солнце - основной источник энергии для Земли, оно оказывает влияние на все земные процессы. Земля находится на удачном расстоянии от Солнца, поэтому на ней сохранилась жизнь. Солнечное излучение создает пригодные для живых организмов условия. Если бы наша планета была ближе - она была бы слишком горячей, и наоборот.
Так поверхность Венеры разогрета почти до 500 градусов и давление атмосферы огромно, поэтому встретить там жизнь практически невозможно. Марс находится дальше от Солнца, для человека там слишком холодно, иногда температура ненадолго поднимается до 16 градусов. Обычно же на этой планете сильные морозы, при которых замерзает даже углекислый газ, из которого состоит атмосфера Марса.

Как долго будет существовать Солнце?
Каждую секунду Солнце перерабатывает около 600 млн. т. водорода, производя при этом примерно 4 млн. т. гелия. Сопоставляя такую скорость с массой Солнца, возникает вопрос: как долго просуществует наше светило? Совершенно ясно, что Солнце не будет существовать вечно, хотя впереди у него невероятно долгая жизнь. Сейчас оно находится в среднем возрасте. На переработку половины своего водородного топлива у него ушло 5 млрд. лет. В грядущие годы Солнце будет медленно разогреваться и немного увеличиваться в размере. В течение следующих 5 млрд. лет его температура и объем будут постепенно возрастать по мере того, как водород будет сгорать. Когда весь водород в центральном ядре израсходуется, Солнце будет в три раза больше, чем теперь. Все океаны на Земле выкипят. Умирающее Солнце поглотит Землю и превратит твердую породу в расплавленную лаву. В глубине Солнца ядра гелия будут комбинироваться, образуя ядра углерода и более тяжелых веществ. В конечном счете, Солнце остынет, превратившись в шар ядерных отходов, так называемый белый карлик.

3. Солнце - центральное тело нашей планетной системы

Солнце -- ближайшая к Земле звезда, представляющая собой раскаленный плазменный шар. Это гигантский источник энергии: мощность излучения его очень велика -- около 3,8610 23 кВт. Ежесекундно Солнце излучает такое количество тепла, которого вполне хватило бы, чтобы растопить слой льда, окружающий земной шар, толщиной в тысячу км. Солнце играет исключительную роль в возникновении и развитии жизни на Земле. На Землю попадает ничтожная часть солнечной энергии, благодаря которой поддерживается газообразное состояние земной атмосферы, постоянно нагреваются поверхности суши и водоемов, обеспечивается жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти, природного газа.

В настоящее время принято считать, что в недрах Солнца при огромнейших температурах --около 15 млн. градусов -- и чудовищных давлениях протекают термоядерные реакции, которые сопровождаются выделением огромного количества энергии. Одной из таких реакций может быть синтез ядер водорода, при котором образуются ядра атома гелия. Подсчитано, что в каждую секунду в недрах Солнца 564 млн т водорода преобразуются в 560 млн т гелия, а остальные 4 млн т водорода превращаются в излучение. Термоядерная реакция будет происходить до тех пор, пока не иссякнут запасы водорода. В настоящее время они составляют около 60 % массы Солнца. Такого резерва должно хватить по меньшей мере на несколько миллиардов лет.

Почти вся энергия Солнца генерируется в его центральной области, откуда переносится излучением, а затем во внешнем слое -- передается конвекцией. Эффективная температура поверхности Солнца -- фотосферы -- около 6000 К.

Наше Солнце -- источник не только света и тепла: его поверхность излучает потоки невидимых ультрафиолетовых и рентгеновских лучей, а также элементарных частиц. Хотя количество тепла и света, посылаемого на Землю Солнцем, на протяжение многих сотен миллиардов лет остается постоянным, интенсивность его невидимых излучений значительно меняется: она зависит от уровня солнечной активности.

Наблюдаются циклы, в течение которых солнечная активность достигает максимального значения. Их периодичность составляет 11 лет. В годы наибольшей активности увеличивается число пятен и вспышек на солнечной поверхности, на Земле возникают магнитные бури, усиливается ионизация верхних слоев атмосферы и т. д.

Солнце оказывает заметное влияние не только на такие природные процессы, как погода, земной магнетизм, но и на биосферу -- животный и растительный мир Земли, в том числе и на человека.

Предполагается, что возраст Солнца не менее 5 млрд лет. Такое предположение основано на том, что в соответствии с геологическими данными наша планета существует не менее 5 млрд лет, а Солнце образовалось еще раньше.

Алгоритм расчета траектории перелета на ограниченную орбиту с заданными характеристиками

Анализируя решение (2.4) линеаризованной системы (2.3), можно заключить, что амплитуды орбиты по осям X и Y зависят друг от друга линейно, а амплитуда по Z является независимой, при этом колебания по X и по Y происходят с одной частотой...

Алгоритм расчета траектории перелета на ограниченную орбиту с заданными характеристиками

Известно, что перелет на орбиту вокруг точки либрации L2 системы Солнце-Земля может быть осуществлен совершением одного импульса на низкой околоземной орбите , , , . Фактически, данный перелет осуществляется по орбите...

Звезды и созвездия едины

В этом разделе рассмотрим, каким образом звезды/созвездия могут, как навредить, так и помочь, чего нам стоит ожидать от Вселенной. В 12-ом вопросе "Звезды могут навредить или же помочь?" многие отметили по равно, что звезды как могут навредить...

Земля - планета Солнечной системы

Солнце - центральное тело Солнечной системы - является типичным представителем звезд, наиболее распространенных во Вселенной тел. Как и многие другие звезды, Солнце представляет собой огромный газовый шар...

В данной работе движение космического аппарата, находящегося на орбите в окрестности точки либрации L1 системы Солнце-Земля, будет рассматриваться во вращающейся системе координат, иллюстрация которой приведена на рисунке 6...

Моделирование орбитального движения

Космический аппарат в окрестности точки либрации может находится на ограниченных орбитах нескольких типов, классификация которых приведена в рабтах . Вертикальная орбита Ляпунова (рис. 8) - плоская ограниченная периодическая орбита...

Моделирование орбитального движения

Как было сказано в пункте 2.4, одним из главных условий при выборе ограниченной орбиты в окрестности точки либрации L1, подходящей для осуществления космической миссии, непрерывно наблюдаемой с поверхности Земли...

Наша Солнечная система

Для того, чтобы понять строение такого гигантского объекта, как Солнце, нужно представить себе огромную массу раскалённого газа, которая сконцентрировалась в определенном месте Вселенной. Солнце на 72% состоит из водорода...

Поверхностное исследование характеристик Солнца

Солнце - центральное тело Солнечной системы - представляет собою горячий газовый шар. Оно в 750 раз превосходит по массе все остальные тела Солнечной системы вместе взятые...

Создание модели возникновения Солнечной системы из межзвездного газа на базе численного моделирования с учетом гравитационного взаимодействия частиц

В результате проведенных исследований (в том числе и не вошедших в материалы данной публикации) в рамках принятых основных представлений образования Солнечной системы предложена модель образования планетных тел...

Солнечная система. Активность Солнца и ее влияние на климатообразующий фактор планеты

Девять крупных космических тел, называемых планетами, обращаются вокруг Солнца, каждая по своей орбите, в одном направлении - против часовой стрелки. Вместе с Солнцем они составляют Солнечную систему...

Солнечно-Земные связи и их влияние на человека

Что же говорит нам наука о Солнце? Как далеко Солнце от нас и как оно велико? Расстояние от Земли до Солнца составляет почти 150 млн. км. Легко написать это число, но представить себе такое большое расстояние трудно...

Солнце, его состав и строение. Солнечно-земные связи

Солнце -- единственная звезда Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль. Масса Солнца составляет 99...

Солнце, его физические характеристики и воздействие на магнитосферу Земли

Солнце - ближайшая к Земле звезда, является рядовой звездой нашей Галактики. Это карлик главной последовательности диаграммы Герцшпрунга-Рессела. Принадлежит к спектральному классу G2V. Ее физические характеристики: · Масса 1...

Понравилась статья? Поделиться с друзьями: